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Abstract 

A finite-difference time domain solution of the airfoil gust problem is obtained 

using a high-accuracy nonlinear computational aeroacoustics code. For computational 

efficiency, the equations are cast in chain-rule curvilinear form, and a structured 

multiblock solver is used in parallel. In order to fully investigate the performance of this 

solver, a test matrix of eight problems are computed (two airfoil geometries, two gust 

frequencies, and two gust configurations). These results are compared to solutions 

obtained by the GUST3D frequency-domain solver both on the airfoil surface and in the 

far field. Grid density and domain size studies are included. 
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1. Introduction 

Computational aeroacous tics (CAA) is concerned with the time-accurate solution of 

flow and acoustic phenomena over long periods of time. In the problems of interest, the 

flow has a range of length and time scales, and bodies with complex geometry are in the 

computational domain. To accurately compute these unsteady problems, high-order 

finite-difference schemes and optimized schemes have been developed, as well as high- 

accuracy boundary conditions. For an overview of the CAA field, the reader is referred to 

two excellent review papers’s2. 

One problem of interest is the noise radiated when a vortical gust impinges on an 

airfoil with realistic geometry. This problem appears in helicopter noise as well as in 

turbomachinery noise. In the past, this problem has been solved numerically by finite- 

difference frequency-domain solvers by Scott and A t a ~ s i ~ ’ ~ .  In the time domain, it has 

been solved for flat plates using linearized potentia1 by Hariharan et. a15, using the 

linearized Euler equations by Tam et. a1.6, and using full nonlinear Euler equations by 

Lockard and Morris7. The nonlinear Euler work of Lockard and Morris has also been 

extended to NACA 0006 and 0012 airfoil geometries, both lifting and nonlifting8. 

In past work, the gust response of two Joukowski airfoil geometries has been 

computed and compared to the GUST3D solutions using the NASA GRC PFC6 code.991o 

The ability of the PFC6 solver to accurately capture the pressure disturbance distribution 

on the airfoil surface has been demonstrated in that work. 

The present work is a more in-depth investigation of the performance of the PFC6 

code, comparing results from the near- and far-field as well as on the airfoil surface. The 

results show the ability of the code to accurately predict surface as well as far-field noise 



radiation. Grid density and domain studies show the effects of the boundary conditions 

and grid spacing on the solution obtained. 

2. Mathematical and Numerical Formulation 

In this work, the 2-D nonlinear Euler equations are solved. In Cartesian coordinates 

these equations are written as: 

dQ dE dF -+-+-=o 
dt dx by 

where 



and 

0 p = (y-1) E --p(u2 +v2 ( :  
Since the Joukowski airfoil has a complex geometry that does not lend itself to 

Cartesian grids, the equations were recast in generalized curvilinear coordinates. From 

previous numerical tests", the chain-rule formulation was chosen as the most accurate 

form of the equations. The chain-rule curvilinear Euler equations are written as: 

The code used in this work was the NASA GRC PreFactored Compact 6 (PFC6) 

code, which is a predecessor to the current NASA GRC BASS code. The time stepping 

method used by PFC6 was the low storage fourth-order nonlinear extension of Hu's 5-6 

Low Dispersion and Dissipation Runge-Kutta scheme12 by Stanescu and Habashi13. 

The spatial derivatives are calculated using the prefactored sixth-order compact 

scheme and explicit boundary stencils of Hixon.14 At block boundaries, an 11- point 

explicit stencil was used. A 10th order explicit filter15 was used at every stage of the 

Runge-Kutta solver to provide dissipation. The code is written in Fortran 90 to take 

advantage of the improved memory management and data structures of Fortran 90 as 

compared to Fortran 77. This scheme and code has been extensively validated on 

benchmark problems, performing very well (e.g., Refs. 9,10,14,16-18,21). 



The grid used employed a C-grid topology (Figure l), extending at least five chord 

lengths away from the airfoil in each direction. Several tests were conducted for larger 

domains which extended 10 and 20 chord lengths away. The smallest grid was 433 x 125 

(54125 total) points, with the middle grid being 605 x 240 (145200 total) points, and the 

largest grid having 790 x 271 (214090 total) points. All grids were generated using the 

commercial package Gr idPr~ '~ .  The grid was clustered algebraically in the normal 

direction (An = 0.01) and near the trailing edge point (Ax = O.Ol), as shown in Fig. 2. A 

stretching ratio of 1.05 was used to a far-field spacing of Ax = Ay = 0.106. This spacing 

gave a minimum of 15 points per gust wavelength. While this is far more than the six 

points per wavelength that the scheme could use on a uniform Cartesian grid, the dense 

grid was used to ensure that resolution problems would be minimized for this test. 

For the calculation, the grid was generated as a single block and the domain was 

distributed by the code for parallel computations on an arbitrary number of processors. 

For this 2D test case, tests on both a cluster of SGI Octane workstations as well as on a 

cluster of Apple Power Macintosh G4/450 machines showed excellent parallel 

performance for up to 15 machines. 

3. Problem Description 

In this set of problems, a simple-harmonic vortical gust convects past a 12% thick 

Joukowski airfoil. The gust has the distribution: 



Here, E = 0.02. 

Two gust configurations were tested. The first was a transverse gust: 

a = 2 k  
p = 0  
u = 2kM 

and the second was a two-dimensional gust: 

a = 2 k  
p = 2 k  
u = 2kM 

where M is the freestream Mach number. 

For each gust distribution, two reduced frequencies were tested: k = 0.1, and k = 1.0. 

Figures 3 and 4 show instantaneous v-velocity distributions for the cambered airfoil cases 

at k = 1.0, while Figures 5 and 6 show the instantaneous pressure distributions for those 



cases. Note that the two-dimensional gust propagates at a 45" angle to the airfoil. Note 

also the clean boundary treatments and lack of reflections for both vortical and acoustic 

waves. 

The mean flow at infinity is defined as: 

p = 1.0 
E = M  
V = O  

where M = 0.5 and y = 1.4. 

Two airfoil geometries are tested in this work. The first geometry is a symmetric 

airfoil at a zero degree angle of attack. The second geometry is a cambered airfoil 

(camber ratio = 0.02) at a two-degree angle of attack. 

4. Initial and Boundarv Conditions 

For both cases the flow was initialized to the mean flow with the vortical gust 

superposed: 



At the wall, Hixon's inviscid curvilinear wall boundary condition*' was used, 

modified to set the normal momentum to zero at the wall at each Runge-Kutta stage. 

At the inflow boundary, the acoustic radiation condition of Tam and Webb21 was used 

on the outgoing perturbations. For example, the outgoing u-velocity perturbation uBC was 

defined as: 

(13) 
- 

'BC = 'boundary - ' - ' g u s t  

At the outflow boundary, Tam and Webb's radiation outflow condition*l was used 

with no correction for the outgoing vortical gust. 

At the trailing edge point on the airfoil, the C-grid topology defines the airfoil 

geometry incorrectly, causing numerical inaccuracy. While an 0-grid geometry would 

define the trailing edge geometry properly, the C- grid was chosen due to the excessive 

number of grid points and the associated small time steps that the 0- grid would require 

to accurately resolve the sharp trailing edge. 

At the trailing edge, an upper and lower wall condition is calculated; this makes the 

trailing edge point double-valued. The wake is single-valued, however; the upper wake 

block is allowed to set the wake line. The discontinuity in the boundary condition on the 

surface line as it enters the wake causes a loss of accuracy near the trailing edge, which is 



especially apparent for the lifting, high-frequency results. To reduce the effect on the 

global solution, points were clustered near the trailing edge as shown in Figure 2. Figure 

7 shows the effect of the discontinuity on the pressure contours near the trailing edge of 

the cambered airfoil. The effect was much stronger on the cambered lifting airfoil than on 

the symmetric nonlifting airfoil. 

5. Results 

The PFC6 code was run until the lift coefficient settled to a simple harmonic state, 

corresponding to a nondimensional time of 210, requiring 55 hours using the largest grid 

on a 15-processor Macintosh G4/450 cluster. Later optimization of the code reduced this 

time to 19 hours. As expected, the nonlifting airfoil case converged faster; the lifting 

airfoil case results were still changing very slightly from one period of gust oscillation to 

the next. A time step of CFL = 1.5 was used for all calculations, giving approximately 

9 1 1 time steps per cycle of vorticity for the k = 1 .O case and 91 10 time steps per cycle of 

vorticity for the k = 0.1 case on the smallest grid. 

The mean pressures on the airfoil for the 2-D gust cases are shown in Figure 8, 

compared to FL036 results2*. The effect of the trailing edge condition is apparent in both 

figures; however, the effect is localized near the trailing edge. In both figures, some 

oscillations are seen near the peak of the pressure curve; this is due to the high gradients 

in both the flow properties and the changes in grid spacing near the leading edge. 

However, the effect on the mean solution is minimal. It is seen that the lifting airfoil peak 



pressures are consistently overpredicted; studies found that enlarging the computational 

domain caused the predicted lift to decrease. 

Figures 9 and 10 show the RMS pressure disturbance distribution on the airfoil. 

Again, some oscillations can be seen near the peaks of the pressure disturbance, but these 

were found to have little effect on the solution. The trailing edge condition has some 

effect on the solution on the airfoil, particularly for the high- frequency gusts. However, 

as shown in Figures 9 and 10, the code is predicting the changing pressure distributions 

for all eight test cases very well, accurately capturing the effects of airfoil geometry, gust 

geometry, and gust frequency. 

Figures 11 and 12 show the acoustic intensity at a distance of one chord length away 

from the centerpoint of the airfoil. Here the comparison is very good for the low- 

frequency cases and still good for the high-frequency cases. Notice that the agreement is 

better for the nonlifting cases than for the loaded airfoils; however, all comparisons are 

very acceptable. 

Figures 13 and 14 show the acoustic intensity at a distance of four chord lengths away 

from the centerpoint of the airfoil. The GUST3D solution at this location was obtained 

using a Kirchhoff approach.23 The Kirchhoff surface was a circle of radius two chord 

lengths, centered about the airfoil center. Again, the comparisons are very good for the 

low-frequency cases, and the high-frequency results are acceptable. 



6. Grid Densitv and Domain Size Studies 

Two solution convergence studies were performed in this work. In the first study, the 

effect of grid density on the solution was tested for the low-frequency, 1D gust case on 

the cambered airfoil. A dense grid was generated which contained 677 x 233 points 

(157741 total points), but still using the small domain ( 5  chord lengths to the outer 

boundary). In this way, the effect of both clustering more grid points at the high-gradient 

leading edge region and increasing the number of grid points per wavelength could be 

determined. As Figure 15 illustrates, there was very little difference in the computed 

solutions for both grid densities. Thus, all other cases were run using grids closely 

resembling the small- domain grid near the airfoil. 

The next study focused on the effect of the boundary proximity to the airfoil. For the 

cambered, lifting airfoil case in particular, the distance to the far-field boundary condition 

had a large effect on the computed results. Figures 16-18 show the effect of increasing 

domain size on the acoustic intensity results at one chord length away from the airfoil, 

with the domain boundaries ranging from 5 to 20 chord lengths away from the airfoil. It 

was found during these numerical investigations that the outer boundary effect was 

minimal on the near-field solution as long as the outer boundary was located at least 10 

chord lengths away from the airfoil. 



7. Conclusions 

A test matrix of eight gust-airfoil interaction problems were solved using a 

parallelized prefactored sixth- order compact scheme with 10th order filtering, run on 

distributed computer clusters. These problems tested the accuracy of the code on 

stretched, curvilinear grids with nonlinear flows. In all cases, the code was robust and 

converged well. In these tests, the code predicted the trends and magnitudes of the airfoil 

gust response very well for the eight test cases, while showing some effect from the 

boundary condition reflections and the close proximity of the computational boundaries. 

The effect of larger domain sizes was investigated, and it was found that the near-field 

solution became invariant once the domain boundary was at least 10 chord lengths away 

from the airfoil. A grid density study was also performed, and it was found that the 

solution was effectively grid-independent for these calculations. 
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Fi yures 

Figure 1: C-Grid Used for Joukowski Airfoil (433 x 125) 



Figure 2: Closeup of Symmetric Airfoil Grid 



Figure 3: Instantaneous V Velocity Distribution 

(k = 1.0,lD gust, cambered airfoil) 



Figure 4: Instantaneous V Velocity Distribution 

(k = 1.0,2D gust, cambered airfoil) 



Figure 5: Instantaneous Pressure Distribution 

(k = 1.0,lD gust, cambered airfoil) 



Figure 6: Instantaneous Pressure Distribution 

(k = 1.0,2D gust, cambered airfoil) 



Figure 7: Effect of Trailing Edge Grid Singularity on Instantaneous Pressure 

Contours for Cambered Airfoil 
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Figure 8: Mean Pressure Distribution on the Airfoil Surface 
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Figure 9: RMS Pressure Disturbance Distribution on the Airfoil Surface 

(k = 0.1) 



Figure 10: RMS Pressure Disturbance Distribution on the Airfoil Surface 

(k = 1.0) 
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Figure 11: Acoustic Intensity Distribution at R = 1.0 

(k = 0.1) 
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Figure 12: Acoustic Intensity Distribution at R = 1.0 

(k = 1.0) 
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Figure 13: Acoustic Intensity Distribution at R = 4.0 

(k = 0.1) 
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Figure 14: Acoustic Intensity Distribution at R = 4.0 

(k = 1.0) 
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Figure 16: Effect of Domain Size on Acoustic Intensity at R = 1.0 

(k = 0.1,lD gust, cambered airfoil) 
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Figure 17: Effect of Domain Size on Acoustic Intensity at R = 1.0 

(k = 1.0,lD gust, cambered airfoil) 


